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Collective Thomson scattering with extreme ultraviolet light or x-rays is shown to allow for
a robust measurement of the free electron density in dense plasmas. Collective excitations like
plasmons appear as maxima in the scattering signal. Their frequency position can directly be
related to the free electron density. The range of applicability of the standard Gross-Bohm dispersion
relation and of an improved dispersion relation in comparison to calculations based on the dielectric
function in random phase approximation is investigated. More important, this well-established
treatment of Thomson scattering on free electrons is generalized in the Born-Mermin approximation
by including collisions. We show that, in the transition region from collective to non-collective
scattering, the consideration of collisions is important.
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I. INTRODUCTION

A key issue in the diagnostics of dense plasmas is
the determination of the free electron density and tem-
perature. Physical properties such as line profiles,
bremsstrahlung spectrum or Thomson scattering can be
used for that purpose. In this context, the knowledge of
the plasmon resonance is necessary for the analysis of ex-
perimental data. Therefore, we discuss the applicability
of the Gross-Bohm dispersion relation and options to go
beyond it when considering the determination of plasma
parameters in warm dense matter (WDM), where many-
particle effects like collisions play an important role.

The region of WDM considered is relevant for, e.g., in-
ertial confinement fusion experiments or models for plan-
etary interiors. WDM is characterized by a free electron
density of ne = 1022 − 1026 cm−3 and temperatures of
several eV. These plasmas are opaque in the optical re-
gion since the frequency of light ω0 = 2πc/λ0 is lower
than the plasma frequency ω2

pe = nee
2/(ǫ0me) of the free

electron subsystem, with the electron density ne and the
electron mass me. Therefore, probing plasmas with den-
sities approaching solids or even higher densities requires
x-ray sources.

Powerful x-ray pulses are produced by energetic opti-
cal lasers [1] and then used to pump and probe samples
in the near-solid density regime. The 4.75 keV titanium
He-α backlighter [2, 3] has been used to perform non-
collective Thomson scattering spectrum on solid density
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beryllium. From the shape of the Compton shifted elec-
tron scattering signal, the electron temperature could be
detected. In a another pioneering experiment, scatter-
ing from the collective electron plasma mode (plasmon)
at solid density beryllium using a Cl Ly-α backlighter at
2.96 keV was also performed [4].

Alternatively, the study of WDM will eventually be
possible with new 4th generation light sources (FEL-
free electron lasers in the VUV and x-ray region) as a
tool to probe near-solid density targets. Currently avail-
able is the FLASH facility at DESY, Hamburg, with
wavelengths ranging from 7 − 50 nm in the VUV region
[5, 6]. The construction of an x-ray FEL is planned at
DESY [7, 8] in 2013. A similar project is currently under
construction at the Stanford Linear Acceleration Center
(SLAC) [9].

In plasmas at near solid density, strong coupling ef-
fects are important. In particular, a consistent many-
body theory is needed if the nonideality parameter Γe

for electrons

Γe =
e2

4πǫ0kBTe

(

4πne

3

)1/3

(1)

is larger than 1. The plasma parameters, i.e. the free
electron temperature Te and the free electron density ne,
as well as the ionization state Z, can be derived analyz-
ing the Thomson scattering signal. The electron tem-
perature can be obtained using the method of detailed
balance [4, 10], while the electron density follows from
the plasmon dispersion relation for collective scattering.
In this paper, we discuss the measurement of the free
electron density via the maximum position of the plas-
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mon peak. We compare with the usual Gross-Bohm [11]
dispersion relation ωGB(k). Furthermore, we analyze the
improved dispersion relation (IDR) [10] accounting for
higher density effects, characterized by the degeneracy
parameter Θe for electrons

Θe =
2mekBTe

h̄2 (3π2ne)
−2/3 , (2)

and higher orders of the scattering wavenumber. In
Ref. [12], analytic results for the dynamic structure fac-
tor as the basic input for the Thomson scattering cross
section on the level of the random phase approximation
(RPA) were shown. Recently, the influence of collisions
on the dynamic structure factor [13] was studied. A
systematic improvement of the Born approximation in-
cluding dynamic screening and strong collisions [14, 15]
has been accomplished by use of thermodynamic Green’s
functions leading to the Gould-DeWitt [16] scheme. This
can be extended to finite wavenumbers k by the Mermin
approach [17–19] in order to calculate the dynamic struc-
ture factor.

For the interpretation and evaluation of state-of-the-
art plasma experiments, accurate measurements of the
Thomson scattering signal are needed. Therefore, the
scattering of photons on plasmas has been studied for
a long time [20–24]. We will show that Thomson scat-
tering can indeed serve as a reliable diagnostic tool to
analyze plasma parameters as, e.g., density, temperature,
and plasma composition or to test the quality of the mod-
els used to determine the dynamic structure factor.

In the next section, we introduce the dynamic struc-
ture factor and the Born-Mermin approximation (BMA).
In Section III, we study the position of the plasmon peak
under the influence of collisions. The Gross-Bohm plas-
mon dispersion relation and the IDR are described in
Section IV. The results for solid density plasmas are
shown in Section V. We will conclude with a summary.

II. DYNAMIC STRUCTURE FACTOR

As described in [12, 21, 24, 25], the experimental
Thomson scattering cross section is related to the dy-
namic structure factor of all electrons in the plasma ac-
cording to

d2σ

dΩdω
= σT

k1

k0
See(k, ω) . (3)

Here, σT = 6.65×10−29 m2 is the Thomson cross section,
k0 and k1 are the wavenumbers of the incident and the
scattered light, the energy and momentum transfer are
given by ∆E = h̄ω = h̄ω1 − h̄ω0 and h̄k = h̄k1 − h̄k0.
The momentum is related to the scattering angle θ in
the limit h̄ω ≪ h̄ω0 according to k = 4π sin(θ/2)/λ0.
Here, we follow Chihara’s approach [21, 24], in that the
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FIG. 1: (color online) Electronic dynamic structure factor
See(k, ω) from collective (α = 2.0) up to non-collective (α =
0.5) Thomson scattering calculated in BMA for a fully ionized
hydrogen plasma with ne = 1021 cm−3, a laser wavelength
λ0 = 4.13 nm, and a scattering angle θS = 160◦.

total dynamic structure factor can be written in terms
of contributions from free electrons, weakly and tightly
bound electrons, and core electrons. In this paper, the
dynamic structure factor of free electrons is considered.

In thermodynamic equilibrium, the dynamic structure
factor See(k, ω) and the longitudinal dielectric function
ǫ(k, ω) are related via the fluctuation-dissipation theorem

See(k, ω) = − ǫ0h̄k2

πe2ne

Im ǫ−1(k, ω)

1 − exp
(

− h̄ω
kBTe

) . (4)

A peak in the dynamic structure factor or in the imagi-
nary part of the inverse dielectric function,

Im ǫ−1(k, ω) =
−Im ǫ(k, ω)

[Re ǫ(k, ω)]2 + [Im ǫ(k, ω)]2
, (5)

can be interpreted as a resonant charge density excitation
or plasmon. In general, the dielectric function is given in

terms of the polarization function Π(~k, ω) via

ǫ(~k, ω) = 1 − 1

ǫ0k2
Π(~k, ω) . (6)

Neglecting collisions, the polarization function is given in
RPA as

ΠRPA(k, ω) =
1

Ω0

∑

p

e2
fe

p+k/2 − fe
p−k/2

∆Ee
p,k − h̄(ω + iη)

. (7)

Here, Ω0 is the normalization volume and ∆Ee
p,k =

Ee
p+k/2 − Ee

p−k/2 = h̄2
k · p/me. Furthermore, fe

p =

[exp(Ee
p−µe)/kBTe+1]−1 denotes the Fermi distribution

function, µe the chemical potential of the electrons. The
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limit η → 0 has to be taken after the thermodynamic
limit.

We improve the RPA by considering collisions if using
a Drude-like behavior for the damping of the frequency
dependent dielectric function via a collision frequency.
Within linear response theory [19], the dynamic collision
frequency ν(ω) can be consistently introduced via the
Mermin dielectric function

ǫM(k, ω) − 1 =

(

1 + iν(ω)
ω

)

[

ǫRPA(k, ω + iν(ω)) − 1
]

1 + iν(ω)
ω

ǫRPA(k,ω+iν(ω))−1
ǫRPA(k,0)−1

.(8)

In [13, 25], the influence of collisions on the dynamic
structure factor was investigated for a wide range of tem-
peratures and densities applying various approximations.
In this paper, we will evaluate the collision frequency in
Born approximation with respect to a statically screened
Debye potential which can be written [10, 14, 15] as

νBorn(ω) = −i
ǫ0niΩ

2
0

6π2e2neme

1

ω

∫ ∞

0

dq q6V 2
D(q)Sii(q)

×
[

ǫRPA(q, ω) − ǫRPA(q, 0)
]

, (9)

with Sii(q) being the static ion-ion structure factor and
VD(q) = −Ze2/(ǫ0Ω0(q

2 + κ2)) the statically screened
electron-ion Debye potential. κ is the inverse screening
length in the plasma which is given for plasmas at any
degeneracy by

κ2 =
e2m

3/2
e√

2π2ǫ0h̄
3

∫

∞

0

dEp E−1/2
p fe

p . (10)

In the classical case, the well-known inverse Debye screen-
ing κ2

D = nee
2/(ǫ0kBTe) is obtained.

Applying to scattering experiment in warm dense mat-
ter, the range of the wavenumber k is of interest, which
is given by the experimental setup. It allows to discrim-
inate collective and non-collective scattering. Therefore,
to further analyze the structure factor and Thomson scat-
tering, the scattering parameter [26]

α =
κ

k
(11)

is introduced. For α < 1, the scattering is non-collective,
and we can investigate short-range correlations within
the Debye sphere [1]. Long-range correlations are rele-
vant for collective scattering (α > 1). In this case, the
electronic structure factor See(k, ω), shows two partic-
ularly pronounced side maxima found symmetrically to
the central Rayleigh peak which are related to the free
electron density, see also [4]. In the following we will re-
strict ourselves to the red shifted peak since it is the one
with the higher intensity.

In Fig. 1, the electronic dynamic structure factor
See(k, ω) in BMA is shown for different conditions. For
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FIG. 2: (color online) Dielectric function ǫRPA(k, ω) of elec-
trons for electron densities: a) ne = 1.0×1023 cm−3 (α = 1.1)
and b) ne = 5.0× 1023 cm−3 (α = 2.1). The electron temper-
ature is Te = 12 eV, laser wavelength λ0 = 0.42 nm, and the
scattering angle θS = 40◦.

collective scattering (α = 2.0), we see a sharp peak near
the electronic plasma frequency ωpe. For non-collective
scattering (α = 0.5), only one maximum of See(k, ω) is
found and the peak is broadened due to thermal elec-
tronic motion. Within our approach, we now consider
collective scattering with a scattering parameter α > 1.
We will present results for the dielectric function in Born-
Mermin approximation, where the maximum position
Smax

ee (k, ω) is determined numerically as a function of
density and temperature. Nevertheless, it is useful for
plasma diagnostics to have analytical estimates for the
peak position. We will aim at an improved plasmon dis-
persion relation below.

III. POSITION OF PLASMON PEAK IN THE

DRUDE LIMIT

In the following, we will discuss the position of the
maximum in the dynamic structure factor See(k, ω)
which is due to a red shift of the probing frequency
and is related to the imaginary part of the inverse di-
electric function according to Eq. (4). In the collective
regime, the maximum position is the so-called plasmon
peak or plasmon resonance. For strong collective scatter-
ing (α ≫ 1), it is the long-wavelength limit (k → 0).

In Fig. 2, the real and imaginary parts of the dielectric
function, and the imaginary part of the inverse dielectric
function, all calculated within RPA, Eq. (6) using Eq. (7),
are shown for weakly collective (α = 1.1) and collective
(α = 2.1) scattering. For α = 2.1, the real part of the
dielectric function has four zeros. The plasmon peak of
interest can be found at the zero of Re ǫ(k, ω) with the
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highest absolute value of the frequency shift, because the
imaginary part is minimal. Here, a narrow sharp peak of
Im ǫ−1(k, ω) can be found, typical for collective scatter-
ing. In the other case, for α = 1.1, a zero of the real part
of the dielectric function does not exist.

For an estimate of the influence of collisions, we discuss
the position of the plasmon peak within the Drude model
[27, 28], obtained from the Mermin formula Eq. (8) in the
long-wavelength limit

lim
k→0

ǫM(k, ω) = ǫ(ω) = 1 −
ω2

pe

ω[ω + iν(ω)]
. (12)

In the case of a static collision frequency ν = ν(0), and
Im ν = 0, the real and the imaginary part of the dielectric
function are given by

Re ǫ(ω) =
ω2 + ν2 − ω2

pe

ω2 + ν2
, Im ǫ(ω) =

ν

ω

ω2
pe

ω2 + ν2
. (13)

As a result, the imaginary part of the inverse dielectric
function can be written in the following form

Im ǫ−1(ω) =
νωω2

pe(ω
2 + ν2)

ω2(ω2 + ν2 − ω2
pe)

2 + ν2ω4
pe

. (14)

The maximum position of See(k, ω) can be found at

ω2
res ≈ ω2

pe −
ν2

4
, (15)

assuming ν ≪ ωpe. Thus, the plasmon peak is expected
to shift due to collisions. In [25], the static collision fre-
quency, normalized by the electronic plasma frequency,
was shown for a wide range of free electron densities. It
was found, that ν ≈ ωpe only in the density region of
ne = 1021 cm−3 if typical temperatures for WDM are
considered. Otherwise ν ≪ ωpe [13] applies.

In contrast to Eq. (15), an estimate of the maxi-
mum position of See(k, ω) from the dispersion relation
Re ǫ(ω) = 0, Eq. (13) leads to

ω2
0 = ω2

pe − ν2 = ω2
pe

(

1 − ν2

ω2
pe

)

. (16)

In conclusion, for both expressions, the shift of the plas-
mon peak is a function of ν/ωpe. Thus, for ν ≪ ωpe, the
effect of collisions on the position of the plasmon peak
can be neglected, as we will see later in numerical re-
sults. Therefore, we will derive the plasmon dispersion
relation in RPA.

IV. PLASMON DISPERSION RELATION

Generally spoken, plasmons can be found as poles of
1/ǫ(k, z) in the lower complex half plane (Im z < 0) [29].

There are no analytical results available, however. As-
suming small Im ǫ(k, ω), the peak is essentially deter-
mined by the solution of the dispersion relation

Re ǫ(k, ω)|ω=ω0(k) = 0 (17)

or, at least, by a minimum of Re ǫ(k, ω). Considering the
case of the RPA, we present plasmon dispersion relations
in different approximations.

Starting from the Lindhard formula, see Eq. (7), the
real part of the dielectric function can be written as [30]

Re ǫ(k, ω) = 1 −
ω2

pe

ω2
(18)

×
[

1 +
z2

u2
+

3

2

F3/2(η)

u2D5/2
+

3

2

F5/2(η)

u4D7/2
+ . . .

]

for z ≪ u, with u = ω/kvF , z = k/2kF , η = µe/kBTe

and D = 1/Θe. The velocity vF corresponds to the Fermi
wavenumber kF = mevF /h̄ = (3π2ne)

1/3. The Fermi
integrals Fj(x) are defined by Eq. (A.3). From z ≪ u,

the condition k ≪
√

2meω/h̄ is derived. This limits the
applicability of Eq. (18) to scattering parameters

α ≫
√

h̄ωpe

2kBTe
. (19)

Assuming approximation Eq. (18), the dispersion relation
Eq. (17) for the RPA is solved by

ω2
0(k) = ω2

pe (20)

×
[

1 +
〈p2〉
m2

e

k2

ω2
0

+
〈p4〉
m4

e

k4

ω4
0

+

(

h̄

2me

)2
k4

ω2
0

+ . . .

]

with the moments 〈pi〉 related to the Fermi intergrals and
defined by Eq. (A.1).

In the classical limit, limΘ≫1〈p2〉 = 3kBTeme, and by
neglecting terms beyond the order of k2, we obtain the
well-known Gross-Bohm dispersion relation [11]

ω2
GB(k) = ω2

pe +
3kBTe

me
k2 . (21)

The plasmon resonance in the Gross-Bohm relation ωGB

is approximated by the electron plasma frequency ωpe

and an additional term which depends on electron tem-
perature and scattering wavenumber only.

For a weakly degenerate electron gas with Θ ≈ 1, the
Fermi intergrals can be expanded, see Eq. (A.4).Taking
this into account as well as the next order of k, we derive
the improved dispersion relation (IDR)

ω2
IDR = ω2

pe+
3kBTe

me
k2(1+0.088neΛ

3
e)+

(

h̄k2

2me

)2

. (22)

In comparison to the Gross-Bohm dispersion relation, the
range of applicability is extended to higher wavenumbers
(larger scattering angles) and higher densities (or lower
temperatures).
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V. RESULTS FOR WDM

We will now compare the position of the maximum
of the dynamic structure factor See(k, ω) in RPA, see
Eq. (4) - Eq. (7) and BMA, see Eq. (4) - Eq. (9) with the
resonance frequency ωIDR, Eq. (22).

First, we calculate these quantities for a fully ion-
ized hydrogen plasma in the electron density range ne =
(1020 . . . 1022) cm−3, the laser wavelength λ0 = 25 nm,
and scattering angle θS = 90◦. These conditions are rel-
evant for collective Thomson scattering experiments at
FLASH [10]. In Fig. 3, the position of the maximum
of See(k, ω) as a function of the density of free electrons
for the RPA and the BMA for different temperatures
(Te = 0.5, 3, 15 eV) is shown. Furthermore, we com-
pare the calculations with the energy shift ωIDR. In the
density range investigated here, the differences between
Gross-Bohm and IDR are very small, so that only the
IDR results are shown. For all temperatures in the range
of Te = (0.5 . . . 15) eV, the differences between the RPA,
the BMA, and the IDR are less than 5%. The resonance
frequency ωIDR shows the square root dependence on the
electron density.

In the insets, the maximum position of See(k, ω) is
shown for the lower density range starting at 7.5 ×
1019 cm−3 of the free electron density. The frequency
shift is related to the electron plasma frequency. Towards
lower densities and higher temperatures, where a transi-
tion from collective to non-collective scattering occurs,
stronger deviations of the dispersion relations from the
numerical results are observed, in particular for the 15 eV
curves in Fig. 3. For Te = 15 eV, the scattering parame-
ter is α = 0.85 at ne = 7.5×1019 cm−3, and α > 10 at the
highest density ne = 1.0 × 1022 cm−3. The Gross-Bohm
relation and IDR are approximations for zeros of the real
part of the dielectric function, Re ǫ(k, ω) = 0. In the non-
collective scattering region, however, the zeros do not ex-
ist. Therefore, the Gross-Bohm dispersion relation and
also the IDR are not applicable for the transition region
and for non-collective scattering parameters. Neverthe-
less, the maximum in the structure factor as calculated
by BMA or RPA can be used to infer the density from ex-
perimental plasmon spectra. However, the maximum is
less pronounced and experimentally less well detectable.

In a next example, a beryllium plasma is produced and
investigated in pump-probe experiments at the Omega
laser facility [4, 32] with wavelength λ0 = 0.42 nm. Elec-
tron temperatures of Te = 12 eV are obtained and the
scattering signal is observed at an angle θS = 40◦.
In Fig. 4, the dependence of the maximum position of
See(k, ω) in RPA and BMA on the free electron density
are shown, together with the energy shift in IDR and
Gross-Bohm, and the zeros of the real part of the di-
electric function in RPA. Additionally, we compare with
results following from the dielectric function which was
calculated including local field corrections (LFC) [31] and
an experimental point taken from [4]. In the considered
density range, the differences between the structure fac-
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FIG. 3: (color online) Comparison of the maximum position
∆E of See(k, ω) in RPA (green-dotted line) and BMA (black-
solid line) with the energy shift ωIDR (red-dashed-dotted line)
in dependence on electron density ne for a fully-ionized hy-
drogen plasma with the laser wavelength λ0 = 25 nm and
scattering angle θS = 90◦. The insets show the normalized
energy shift for the lower densities.
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line) [31] in dependence on electron density ne for a beryllium
plasma with Zeff = 2.5, Te = 12 eV, and the laser wavelength
λ0 = 0.42 nm and scattering angle θS = 40◦. The green points
are the zeros of Re ǫ(k, ω) and the experimental point is taken
from [4].

tor calculations and the dispersion relations are consid-
erable. For densities smaller than ne = 2.8 × 1023 cm−3,
the scattering parameter α is lower than one, and zeros
of Re ǫ(k, ω) do not exist. Again, GB and IDR are not
applicable. The shift of the maximum position obtained
from the BMA is smaller compared to the RPA due to
the relevance of collisions in this region.

For higher densities (ne ≥ 4.0 × 1023 cm−3), the max-
imum position is not affected by collisions. BMA and
RPA give the same result. For strongly collective regime,
the zeros of the real part of the dielectric function can
be found at the same energy as the maximum position of
See(k, ω). However note, for high densities and collective
scattering, the difference between the Gross-Bohm dis-
persion relation and BMA is ∆E ≈ 4 eV. The improved
dispersion relation with respect to quantum effects un-
derestimates the energy shift with ∆E ≈ 2 eV. These
differences are significant, a few eV shift make an error
of more than 30% in the free electron density.

Fig. 5 shows the energy shift of the Thomson scattering
signal for different free electron densities in dependence
on wavenumber k and scattering angle θS . The scat-
tering parameter α decreases with increasing wavenum-
ber or scattering angle, and decreasing electron density.
For ne = 1.0 × 1023 cm−3, the scattering angle varies
from α = 1.5 to α = 0.5 for θS = 30o to θS = 90o, re-
spectively. For θ > 40o, the scattering is non-collective.
Therefore, the difference between IDR and BMA is sig-
nificant for higher wavenumbers and towards lower densi-
ties, whereas collisions can be neglected. However, in the
region of non-collective scattering the BMA is superior
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FIG. 5: (color online) Comparison of the maximum position
∆E of See(k, ω) in RPA (dotted line) and in BMA (solid
line) with the energy shift of the IDR (dashed line) in depen-
dence on wavenumber k and scattering angle θS respectively
for Thomson scattering on beryllium plasma with Zeff = 2.5,
ne = 1, 3, 6×1023 cm−3, Te = 12 eV, and the laser wavelength
λ0 = 0.42 nm.

to the RPA.

VI. SUMMARY

We have discussed the plasmon resonance position of
the dynamic structure factor See(k, ω), the usual Gross-
Bohm dispersion relation, and the improved dispersion
relation. This is relevant for the determination of the
free electron density in warm dense matter. Firstly, we
calculated the energy shift observed for a fully ionized hy-
drogen plasma. Here, the differences between the disper-
sion relations and the maximum position of the dynamic
structure factor in RPA and BMA are small. Only for
the determination of the free electron density in the tran-
sition region between non-collective and collective scat-
tering, the BMA is needed. For solid targets probed by
x-ray wavelength, the density should be calculated from
the maximum position of See(k, ω) in BMA. In this re-
gion, the usual dispersion relations (GB and IDR) are
not justified.

In this paper, we have shown a method to derive the
free electron density via the resonance position of the
electronic dynamic structure factor in BMA in compari-
son with the estimated resonance position via the usual
dispersion relations. We demonstrate that the dispersion
relations are not suited for the density determination in
the solid-density region. Collision effects are very im-
portant [13] and can be considered within the BMA. A
reliable density determination can only be done by nu-
merically solving the BMA and inspecting the poles of
Im ǫ−1(k, ω).
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APPENDIX

We discuss the calculation of Eq. (20). The prefactors
〈pi〉 are defined as [30]

〈pi〉 =
gs

ne

∫

d3p

(2π)3
pi fe(p) . (A.1)

The prefactor 〈p2〉 of the k2-term in Eq. (20) is propor-
tional to the mean energy of the (ideal) Fermi system
and allows, therefore, to incorporate quantum statistical

corrections. Especially, we have

〈p2〉 =
3

2
kBT

1

y
F3/2(x) , (A.2)

with the parameter y = neΛ
3
e/gs, the thermal wave

length Λe = h/
√

2πmekBT , x = βµ, and the Fermi inte-
grals

Fj(x) =
1

Γ(j + 1)

∫ ∞

0

tjdt

et−x + 1
. (A.3)

In order to supply the reader with tractable expressions
[33, 34], we give the following result

F3/2(y) (A.4)

=

{

y + 0.1768 y2 − 0.0033 y3 + 0.000094 y4 , y < 5.5
0.4836 y5/3 + 1.3606 y1/3 − 1.7 y−1 , y > 5.5 .

The parameter y can be estimated from y =
0.1656(ne/1021cm−3)/(kBT/eV)3/2. For y ≤ 2, one can
use 1/y F3/2(y) = 1 + 0.1768 y making an error less than
1%. With Eq. (A.4), the equation Eq. (20) can be solved
to the order of k4, and we get Eq. (22).
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